Call for Abstract

11th World Congress on Pharmaceutical Sciences and Innovations in Pharma Industry, will be organized around the theme “Latest Trends in Pharmacy : Spanning the Gap in Research and Product Commercialization”

Pharmaceutical Sciences 2017 is comprised of keynote and speakers sessions on latest cutting edge research designed to offer comprehensive global discussions that address current issues in Pharmaceutical Sciences 2017

Submit your abstract to any of the mentioned tracks. All related abstracts are accepted.

Register now for the conference by choosing an appropriate package suitable to you.

The pharmaceutical industry is responsible for the development, production and marketing of medications. Thus, its immense importance as a global sector is evident. Pharmaceutical Industry includes venture that produce synthetic and plant derived preparations, vitamins, antibiotics, blood constituents, drugs in various dosage forms .They are subjected to a variety of laws and regulations that govern the patenting, testing, safety, competence and marketing of drugs. Pharmaceutical Sciences deals with accelerated research to discover new drugs. The industry and volume of productivity is determined by its capital etc. Evolution and elevation in pharmaceutical industry helps in controlling and treating the diseases.

 

Insights and actualities about the pharmaceutical business around the world 
 
The pharmaceutical business is in charge of the improvement, creation and showcasing of prescriptions. In this way, its massive significance as a worldwide segment is apparent. The aggregate level of pharmaceutical income worldwide had achieved about one trillion U.S. dollars. North America is in charge of the biggest part, producing more than 40 percent of these incomes. This is for the most part because of the main part of the U.S. pharmaceutical industry. Be that as it may, as in numerous different ventures, the Chinese pharmaceutical segment demonstrates the most elevated development rates in the course of the most recent years.

 

  • Track 1-1The Changing Healthcare Scene & Impact on the Pharmaceutical Industry
  • Track 1-2The Europe Pharmaceutical Industry Is Rising to Its Challenges
  • Track 1-3Universal Pharmaceutical Trade
  • Track 1-4Pharmaceutical Analytical and QA Consulting services
  • Track 1-5Key issues facing the Pharmaceutical Industry
  • Track 1-6Pharma Tech Transfer

Drug discovery is a process, which aims at identifying a compound therapeutically useful in treating and curing a disease. Typically a drug discovery effort addresses a biological target that has been shown to play a role in the development of the disease or starts from a molecule with interesting biological activities.

The process of drug discovery involves the identification of candidates, synthesis, characterization, screening, and assays for therapeutic efficacy. Once a compound has shown its value in these tests, it will begin the process of drug development prior to clinical trials. Drug discovery and development is an expensive process due to the high costs of R&D and human clinical tests. The average total cost per drug development varies from US$ 897 million to US$ 1.9 billion. The typical development time is 10-15 years. In the past most drugs have been discovered either by identifying the active ingredient from traditional remedies or by serendipitous discovery. At present a new approach is being tried to understand how disease and infection are controlled at the molecular and physiological level and to target specific entities based on this knowledge.

The worldwide market for medication revelation advancements and items came to $38.4 billion in 2011. It has extended to $41.4 billion in 2012 and to $79.0 billion by 2017, a compound yearly development rate (CAGR) of 13.8% somewhere around 2012 and 2017.

  • Track 2-1Steps in Modern Drug Discovery
  • Track 2-2Lead Discovery Methods
  • Track 2-3Advanced Technologies involved in Drug Discovery

Each year many new prescription drugs are approved by the Food and Drug Administration (FDA). The process of developing and bringing new drugs to market is important for primary care physicians to understand. A drug must undergo rigorous testing prior to marketing to and medical use by the general public. The process starts with preclinical testing. For drugs that appear safe, an investigational new drug application is filed with the FDA. If approved, clinical trials begin with phase 1 studies that focus on safety and pharmacology. Phase 2 studies examine the effectiveness of the compound. Phase 3 is the final step before submitting a new drug application (NDA) to the FDA. An NDA contains all the information obtained during all phases of testing. Phase 4 studies, or postmarketing studies, are conducted after a product is approved. Recent changes in legislation have streamlined the approval process. Critics contend that these changes have compromised public safety, resulting in the need to recall several products from the market. Proponents claim that changes in the approval process help patients with debilitating diseases, such as acquired immunodeficiency syndrome, that were previously denied critical medication because of bureaucratic regulations.

The worldwide market for medication disclosure in pharmaceuticals came to about $25.0 billion in 2013. This market is relied upon to reach $29.6 billion in 2014 and $79.8 billion in 2019, with a compound yearly development rate (CAGR) of 22.0% for the time of 2014 to 2019.

  • Track 3-1Discovery and Development
  • Track 3-2Preclinical Research
  • Track 3-3Clinical Research
  • Track 3-4FDA Review
  • Track 3-5FDA Post-Market Safety Monitoring
  • Track 3-6Drug Development Research
  • Track 3-7Drug Development Companies
  • Track 3-8Drug Characterisation

Drug Manufacturing is the process of industrial-scale synthesis of pharmaceutical drugs by pharmaceutical companies. The process of drug manufacturing can be broken down into a series of unit operations such as Milling, Granulation, Coating, Tablet pressing and others. Statistics are critical to the pharmaceutical industry, from clinical operations through manufacturing. However, clinical and manufacturing statistics represent entirely different worlds. Where they might be well staffed on the clinical side, some pharmaceutical companies today aren’t hiring qualified staff to analyze operations data, resulting in misapplied tools, inadequate CAPAs and superficial root cause analysis, all of which lead to financial loss and noncompliance.

The pharmaceutical manufacturing landscape has changed notably over the past decade and is continuing to evolve rapidly. Pharmaceutical manufacturers have begun to wield some new tools, nailing down new efficiencies and better drugs in the process.

The worldwide market for computerized material taking care of was esteemed at about $4.5 billion in 2013 and $4.8 billion in 2014. The aggregate market is anticipated to develop at a compound yearly development rate (CAGR) of 8.1% from 2014 through 2019 and reach $7.1 billion by 2019.

  • Track 4-1Overview of Pharmaceutical Manufacturing Process
  • Track 4-2Automation in Pharmaceutical Manufacturing
  • Track 4-3Pharma Contract Manufacturing

It is carried out for the purpose of safety of the Drug products in order to keep them free from contamination, hinder microbial growth, and ensure product safety through the intended shelf life for the pharmaceuticals.  Some common pharmaceutical packaging techniques include foil and heat sealing; polyester and olefin package printing; polyethylene and polypropylene printing; and flatbed die cutting.

The worldwide market for tissue building and recovery is relied upon to reach $60.8 billion by 2021 from $13.6 billion in 2016, ascending at a compound yearly development rate (CAGR) of 34.9% from 2016 through 2021.

  • Track 5-1Package Design Research and New Trends In The Pharmaceutical Packaging
  • Track 5-2Package Testing
  • Track 5-3Packaging Material
  • Track 5-4Packaging Machine
  • Track 5-5Blister And Strip Packaging
  • Track 5-6Defects In Packages
  • Track 5-7Labeling of Packages

Pharmaceutical quality affects every American. FDA regulates the quality of pharmaceuticals very carefully. The main regulatory standard for ensuring pharmaceutical quality is the Current Good Manufacturing Practice (CGMPs) regulation for human pharmaceuticals. Consumers expect that each batch of medicines they take will meet quality standards so that they will be safe and effective. Most people, however, are not aware of CGMPs, or how FDA assures that drug manufacturing processes meet these basic objectives. Recently, FDA has announced a number of regulatory actions taken against drug manufacturers based on the lack of CGMPs. This paper discusses some facts that may be helpful in understanding how CGMPs establish the foundation for drug product quality.

The worldwide market for biosimilars came to $1.7 billion in 2010 and $2.5 billion in 2011. The market is relied upon to reach $3.6 billion by 2016, a compound yearly development rate (CAGR) of 7.7%.

  • Track 6-1Facts About Current Good Manufacturing Practices (cGMPs)
  • Track 6-2Good Automated Manufacturing Practice (GAMP)
  • Track 6-3FDA Good Manufacturing Practices
  • Track 6-4GMP/GCP Interface & GMP audits
  • Track 6-5GMP Requirements & Standards

Supply of medicine as a strategic product in any health system is a top priority. Pharmaceutical companies, a major player of the drug supply chain, are subject to many risks. These risks disrupt the supply of medicine in many ways such as their quantity and quality and their delivery to the right place and customers and at the right time. 

Supply chain management (SCM) is defined as the integration of key business processes across the supply chain for the purpose of creating value for customers and stakeholders. Indeed supply chain management integrates supply and demand within and across companies in an efficient business model. The Council of Supply Chain Management Professionals defines supply chain management as planning and management of all activities involved in sourcing, procurement, conversion and all logistics activities. There are various aspects of optimizing in the supply chain; eliminating bottlenecks, balancing between lowest material cost and transportation, optimizing manufacturing flow, maintaining the right mix and location of factories and warehouses, vehicle routing analysis, dynamic programming and efficient use of capacities, inventories, and labours are of main aspects of supply chain optimization. All stockholders need to institute the right configuration and adaptability to create best practice and to overcome the obstacles in continues changing environment.

The worldwide market for pharmaceutical supply came to $129 billion in 2015. This market is relied upon to develop from almost $132.2 billion in 2016 to $164.1 billion in 2021 at a compound yearly development rate of 4.4% from 2016-2021.

  • Track 7-1Strategies for Supply Chain Optimization
  • Track 7-2Operational issues in the Pharmaceutical Supply Chain
  • Track 7-3Strategic and Design Issues in the Pharmaceutical Supply Chain
  • Track 7-4Supply Chain Design Summary
  • Track 7-5Global Supply Chain Planning

Quality is always an imperative prerequisite when we consider any product. Therefore, drugs must be manufactured to the highest quality levels. End-product testing by itself does not guarantee the quality of the product. Quality assurance techniques must be used to build the quality into the product at every step and not just tested for at the end. In pharmaceutical industry, Process Validation performs this task to build the quality into the product because according to ISO 9000:2000, it had proven to be an important tool for quality management of pharmaceuticals.

Quality cannot be adequately assured by in-process and finished inspections and testing but it should be built in to the manufacturing process. These processes should be controlled in order that the finished product meets all quality specifications. Validation is one of the important steps in achieving and maintaining the quality of the final product. If each step of production process is validated we can assure that the final product is of the best quality. Validation of the individual steps of the processes is called the process validation. Different dosage forms have different validation protocols. Process Validation is one of the important steps in achieving and maintaining the quality of final product. It gives a higher degree of assurance.

The worldwide pharma process validation advertise has developed to $39.4 billion in 2014 from $29.3 billion in 2013. The market is required to develop at a five-year compound yearly development rate (CAGR) of 13.8% from 2015 to 2020, expanding from $50.6 billion in 2015 to $96.6 billion in 2020.

  • Track 8-1Process Validation and Drug Quality
  • Track 8-2Approach to Process Validation
  • Track 8-3Statutory and Regulatory Requirements for Process Validation
  • Track 8-4Types of Process Validation
  • Track 8-5Validation Protocol and Report

The area unit variety of motives for extending the merchandise development outside of the mature, developed economies (e.g. the EU and therefore the US) and most of them have faith in the high population and market potential of rising markets. Some reasons for this growing trend area unit result of the inevitable “patent cliff” that forces firms to any extend their reach and develop any. It's clear that rising markets supply nice market and population potential however at constant time cause sure challenges, as well as moral, GCP. Licensing in pharmaceutical production is mandatory step for pharmaceutical products. Regulatory matters is definitely acknowledged by the complete pharmaceutical community and authorities try to develop a cooperative model for harmonizing the Regulatory necessities across the regions so as to ease the world pharmaceutical development.

 

  • Track 9-1Information on Compounding
  • Track 9-2Drug Compliance Programs
  • Track 9-3FDA guidance for clinical investigations
  • Track 9-4Nicotine-Containing Products
  • Track 9-5Newly Added Guidance Documents
  • Track 9-6PLR Requirements for Prescribing Information
  • Track 9-7Regulatory Guidance Drug Registration and Listing

Medico-Marketing involves promotion of pharmaceutical products. It facilitates to continuously update physicians, nurses and pharmacists regarding the safe and effective use of medicines. Medico marketing encompasses activities by medicos or organizations to actualize markets for pharmaceutical care.

The World Health Organization defines pharmaceutical promotion as “all information and persuasive activities executed by pharmaceutical manufacturers and distributors, attempting to affect the prescription, supply, purchase, and/or use of medical drugs”.

The worldwide liver infections therapeutics showcase totaled about $24.5 billion in 2014 and is anticipated to approach $33.8 billion by 2019, enlisting a compound yearly development rate (CAGR) of 6.7% through 2019.

 

  • Track 10-1Pharma Market Structure
  • Track 10-2Pharmaceutical Sales
  • Track 10-3Rise in Pricing Pressures
  • Track 10-4Increased Importance of Emerging Markets
  • Track 10-5The Urge to Merge

A huge conflict has arisen between companies producing generic, more affordable drugs, and the big pharmaceutical companies. The multi-billion dollar companies from the pharmaceutical industry are claiming to be the holders of intellectual property rights for producing certain drugs. They are putting in their entire might to stop the production of generic drugs as it could cause a serious dent in their deep pockets.

The Big Pharma companies brand the drugs that they produce and sell them at exorbitant rates. Their claim that they need to be making profit to finance further research in the field of medicine is understandable. However, what needs to be curbed is the corporate avarice of these Big Pharma companies. The generic drug producing companies are using the exact same composition and formulas used to produce branded drugs for a fraction of the input cost, and thereby, are able to sell the drugs without any brand name at much affordable rates.

The worldwide generics division came to $269.8 billion in 2012. This segment is relied upon to reach $300.9 billion in 2013 and $518.5 billion in 2018, with a compound yearly development rate (CAGR) of 11.5%.

The worldwide pharma division came to $319.8 billion in 2012. This segment is relied upon to reach $400.9 billion in 2013 and $618.5 billion in 2018, with a compound yearly development rate (CAGR) of 15.5%.

  • Track 11-1What is Big Pharma?
  • Track 11-2Big Pharma Manufacturers
  • Track 11-3 Increasing Generics & Biosimilars

The last few years have been a positive period overall for both the pharmaceutical and biotechnology industries. Most importantly, there has been a renaissance with regard to the increase in the number of new drugs approved and under development for the two segments of the business.

Many of these innovations are driven by new research methods and the growth of new therapeutic options, such as immune-related oncology drugs, personalized medicine, stem cells, and biologics. We are also witnessing the development of a greater number of drugs that cure diseases rather than just extend life.

The valuations of pharma and biotech companies in the public and M&A markets soared up until August/September of this year in part because of these positive developments. More recently, there has been a setback in public valuations due to the negative publicity about drug pricing.

The overall Pharmaceutical And Biotech Financial Outlook advertise totaled about $123 billion in 2014 and will keep on growing to reach almost $191 billion by 2019, showing a compound yearly development rate (CAGR) of 9.2% amid the conjecture time frame (2014 to 2019).

  • Track 12-1Pharma’s Changing Landscape
  • Track 12-2Boom in Biotech
  • Track 12-3Pharma: What will the future bring?
  • Track 12-4Biotech: What will the future bring?

Pharmaceutical companies can play a central role in the digital revolution of healthcare. But capturing this opportunity requires identifying the right initiatives.

Pharmaceutical companies are running hard to keep pace with changes brought about by digital technology. Mobile communications, the cloud, advanced analytics, and the Internet of Things are among the innovations that are starting to transform the healthcare industry in the ways they have already transformed the media, retail, and banking industries. Pharma executives are well aware of the disruptive potential and are experimenting with a wide range of digital initiatives. Yet many find it hard to determine what initiatives to scale up and how, as they are still unclear what digital success will look like five years from now. This article aims to remedy that. We believe disruptive trends indicate where digital technology will drive the most value in the pharmaceutical industry, and they should guide companies as they build a strategy for digital success.

The digital pharma market is relied upon to reach $ 11.2 billion in 2013.This market is further anticipated that would develop upto $23.5 billion in 2018 with a compound yearly development rate (CAGR) of 16.1%.

  • Track 13-1Pharma: Just Wetting its Feet into Digital waters
  • Track 13-2Digital Pharma : A New Culture
  • Track 13-3Digital Pharma & Customer Service
  • Track 13-4Digital Pharma Opportunities & Challenges
  • Track 13-5Digital’s Increasing Impact on Pharma Communications

Innovation—it is what everyone likes to talk about, but what does it really mean for millions of patients battling disease? Simply put, medical innovation can help patients live longer, healthier and more productive lives.

As one of the most research-intensive and science-driven industries in the U.S., the biopharmaceutical industry is committed to the research and development (R&D) of new treatments and cures for patients, including those who have serious unmet medical needs.  With more than 7,000 innovative drugs in development worldwide by biopharmaceutical companies and over $500 billion invested in R&D since 2000, hope is certainly on the horizon.

Patients are not the only ones who benefit from new drug development.  When new medicines keep patients healthier, the economy gets a boost from a healthier workforce, the cost of healthcare can go down and access improves.  Perhaps above all else, medical advances give patients one essential ingredient for survival: hope.

The biopharmaceutical sector is the most research-intensive industry in the country, investing more than 10 times the amount of R&D per employee than manufacturing industries on average. With our rapidly increasing understanding of disease at the molecular level, science holds more promise for progress against many diseases today than at any time in history. The biopharmaceutical pipeline is demonstrating that promise.

The worldwide market for research and advancement is relied upon to develop from almost $86.5 billion in 2015 to $124.3 billion in 2020 at a yearly development rate of 7.5% from 2015-2020.

  • Track 14-1New Medicines: Changing Lives and Managing Health Care Costs
  • Track 14-2Research – Identifying a New Approach to Treat a Disease or Condition
  • Track 14-3The Biopharmaceutical Research Ecosystem Drives Innovation

Drug absorption is set by the drug’s chemistry properties, formulation, and route of administration. Dosage forms (e.g. tablets, capsules, solutions), consisting of the drug and alternative ingredients, square measure developed to lean by numerous routes (e.g. oral, buccal, sublingual, rectal, parenteral, topical, inhalational). In spite of the route of administration, medicine should be in answer to be absorbed. Thus, solid forms (e.g. tablets) should be able to disintegrate and disaggregate. And Route of Administration in medicine and pharmacological medicine is that the path by that a drug, fluid, poison, or alternative substance is taken into the body. Routes of administration square measure typically classified by the placement at that the substance is applied. Common examples embody oral and endovenous administration. Effects of Disease on Drug disposition refer to all processes concerned within the absorption, distribution metabolism and excretion of medication in an exceedingly living organism.

The worldwide inpatient and outpatient clinical drug store mechanization advertise has developed to almost $3.8 billion in 2016 from $3.5 billion in 2015. The market is relied upon to develop at a five-year compound yearly development rate (CAGR) of 7.9% from 2016 to 2021, expanding to $5.5 billion in 2021.

  • Track 15-1Clinical trials and drug information
  • Track 15-2Outcome research and pharmacoeconomic studies
  • Track 15-3Clinical case studies
  • Track 15-4Role of pharmacist in communicating and counseling patients
  • Track 15-5Clinical genomics and proteomics
  • Track 15-6Risks and benefits of drug therapy
  • Track 15-7Preparation of personalized formulation
  • Track 15-8Therapeutic drug monitoring
  • Track 15-9Influence of national and formulating policies in drug development
  • Track 15-10Pharmacy Clinical Services

The pharmaceutical sciences combine broad range of scientific disciplines that are critical to the discovery and development of new drugs and therapies. Pharmaceutical Sciences is a dynamic and interdisciplinary field that aims to integrate fundamental principles of physical and organic chemistry, engineering, biochemistry, and biology to understand how to optimize delivery of drugs to the body and translate this integrated understanding into new and improved therapies against human disease. At the many of institutes internationally recognized faculty contribute to the field through inquiry into the underlying mechanisms of drug interactions with the human body and development of advanced synthetic or biologically-derived materials that can modulate these interactions in pursuit of better and safer therapies and drug products.

The worldwide market for pharmaceutical science instruments and reagents came to $47.8 billion in 2012. This figure is relied upon to increment to $51.3 billion in 2013 and $77.6 billion in 2018, with an anticipated five-year compound yearly development rate (CAGR) of 8.6%.

  • Track 16-1Preformulation and Formulation
  • Track 16-2Drug Designing and Targeting
  • Track 16-3Routes of Drug Delivery
  • Track 16-4PK-PD
  • Track 16-5Bioavalibility and Bioequivalence

Drug particles in the nanometer size range have unique characteristics that can lead to enhanced performance in a variety of dosage forms. Formulated correctly, particles in this size range are resistant to settling and can have higher saturation solubility, rapid dissolution, and enhanced adhesion to biological surfaces, thereby providing a rapid onset of therapeutic action and improved bioavailability. Scientists at Cirrus Pharmaceuticals, Inc. use nanotechnology to approach classical and novel drug delivery applications. We provide services for producing, formulating, and characterizing nanoparticles for a wide array of applications including, but not limited to, oral, pulmonary and parenteral delivery. Pharmaceutical Nanotechnology deals with emerging new technologies for developing customized solutions for drug delivery systems. 

The worldwide theranostic nanomaterial market was evaluated to add up to about $16 billion in 2011 and $112 billion in 2012. The market ought to add up to about $188 bil0lion by 2017, and have a five-year compound yearly development rate (CAGR) of 10.8%.

  • Track 17-1Characterization of Pharmaceutical Nanotools
  • Track 17-2Engineering of Pharmaceutical Nanosystems
  • Track 17-3Applications of Pharmaceutical Nanotools
  • Track 17-4Challenges to Pharmaceutical Nanotechnology
  • Track 17-5Future Prospects of Pharmaceutical Nanotechnology